Variable Passive Compliance Device for Robotic Assembly
نویسندگان
چکیده
منابع مشابه
Passive Variable Compliance for Dynamic Legged Robots
Recent developments in legged robotics have found that constant stiffness passive compliant legs are an effective mechanism for enabling dynamic locomotion. In spite of its success, one of the limitations of this approach is reduced adaptability. The final leg mechanism usually performs optimally for a small range of conditions such as the desired speed, payload, and terrain. For many situation...
متن کاملThe significance of variable passive compliance in smooth muscle.
ANYONE CONTEMPLATING dynamic roentgenograms of hollow viscera must be impressed that the length changes in the smooth muscles that comprise their walls are larger than the threefold range produced by skeletal muscle having a fixed filament array (1), and studies of muscles isolated from these viscera confirm very long functional ranges. Urinary bladder muscle, for example, has been shown to gen...
متن کاملError Recovery by the Use of Sensory Feedback and Reference Measurements for Robotic Assembly
Industrial robots need instrument or parts transport to do which requires coordinate to show the robot’s instrument, parts and body. When investigating the robot location, we are usually interested in measuring its location relative to a reference coordinate system. In this system it is attempted to make the assemble direction smaller by designing the sensor board and making use of an instrumen...
متن کاملDesign and Fabrication of a Portable 1-DOF Robotic Device for Indentation Tests
There are many tactile devices for indentation examinations to measure mechanical properties of tissue. The purpose of this paper is to develop a portable indentation robotic device to show its usability for measuring the mechanical properties of a healthy abdominal tissue. These measurements will help to develop suitable mathematical models representing abdominal tissue. A 1-DOF portable robot...
متن کاملReview of Actuators with Passive Adjustable Compliance / Controllable Stiffness for Robotic Applications
I n the growing fields of wearable robotics, rehabilitation robotics, prosthetics, and walking robots, variable stiffness actuators (VSAs) or adjustable compliant actuators are being designed and implemented because of their ability to minimize large forces due to shocks, to safely interact with the user, and their ability to store and release energy in passive elastic elements. This review art...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of The Korean Society of Manufacturing Technology Engineers
سال: 2016
ISSN: 2508-5093
DOI: 10.7735/ksmte.2016.25.6.517